¹¹¹Cd Time Differential Perturbed Angular Correlation Studies of High Specific Activity ¹¹¹In-Aqueous Solutions

Z. Z. Akselrod, D. V. Filossofov^a, J. Buša^a, T. Bušova^b, O. I. Kochetov^a, N. A. Lebedev^a, A. F. Novgorodov^a, V. N. Pavlov^a, A. V. Salamatin^a, E. N. Shirani^c, and V. V. Timkin^a Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia

^a Joint Institute for Nuclear Research, LNP, P. O. Box 79, Moscow, Russia
^b P. J. Šafarik University, Department of Organic Chemistry, 04167 Košice, Slovakia
^c Vereshchagin Institute of High Pressure Physics, RAS, 142092 Troitsk, Moscow reg., Russia
Reprint requests to Dr. Z. Z. A.; Fax: +7-095-939-08-96; E-mail: akselrod@nusun.jinr.ru

Z. Naturforsch. **55 a,** 151–154 (2000); received August 23, 1999

Leipzig, Germany, July 25 - 30, 1999.

Time-differential PAC measurements have been made using the high specific activity of 111 In, both in aqueous solutions of the ClO_4 , NO_3 and Cl^- at pH values between 1.0 and 9 and temperatures between 186 and 293 K.

Presented at the XVth International Symposium on Nuclear Quadrupole Interactions,

Key words: ¹¹¹In; ¹¹¹Cd; High Specific Activity; Nuclear Quadrupole Interaction (NQI); Time Differential Perturbed Angular Correlation (TDPAC).